

Unidad Q.5: Conservación de masa y energía Química Tarea de desempeño – Hoja de trabajo laboratorio de Joules

MANTENGA SU VISTA EN EL EFECTO JOULES (JULIOS)
NOMBRE:
Parte A
1. Prepara un calorímetro siguiendo las instrucciones del maestro.
2. Coloca 20.0 g de 1.0 M HCl en el calorímetro. Anota la temperatura inicial del ácido.
Temperatura inicial del ácido = °C
3. Mediante el uso de una cinta de magnesio, anota la masa de 1.00 metro de magnesio (la masa la proveerá el maestro). Mide 4 cm de magnesio y córtalo en pedazos pequeños. Añade rápidamente los pedazos de magnesio al ácido y vuelve a tapar el calorímetro. Inserta un termómetro.
Masa de 1.00 metros de cinta de magnesio = g Longitud del pedazo de cinta de magnesio usado = cm Cálculos de la masa del pedazo de cinta de Mg usada =
Si utilizas virutas de magnesio, usa 0.20 gramos de virutas de magnesio y añádelas al ácido.
4. Agita delicadamente el calorímetro y monitorea la temperatura. Anota la temperatura más alta alcanzada. (Nota: esta reacción libera calor por bastante tiempo y deberá permitírsele reaccionar hasta que la temperatura comience a bajar).
Temperatura final del ácido = °C
Parte B 1. Coloca 20.0 g de 1.0 M HCl en un calorímetro vacío. Anota la temperatura del ácido.
Temperatura inicial del ácido =°C
2. Coloca 0.35 g de óxido de magnesio. Rápidamente, añade el polvo de óxido de magnesio al ácido del calorímetro y vuelve a taparlo. Inserta un termómetro.
Masa actual del óxido de magnesio = g
3. Observa con cuidado y anota la temperatura más alta alcanzada.
Escriba ecuaciones balanceadas para las reacciones: Parte A Parte B
4. Para las reacciones en la parte A y B, calcula el calor de la reacción usando:
$\Delta H = q_{rxn} = (mc_e \Delta T + C' \Delta T)$
Para c_e , use el calor específico de la mezcla = 3.97J/g°C. Si se desconoce la constante del calorímetro, C' asumir que es cero (0). Muestra los cálculos.
q (parte A) =J

Unidad Q.5: Conservación de masa y energía Química

Tarea de desempeño – Hoja de trabajo laboratorio de Joules

	o los valores de J/g, convid a las unidades al usar los		s valores Q. Muestra los cálculos. Presta atención estaciones anteriores.	
	(parte A) = (parte B) =		Cálculos:	
1. Es nece		•	a formación de agua tomando hidrógeno (gas) y ecuación para el calor de la formación de agua.	
	en lados opuestos de la e	•	A y B y cancela las mismas expresiones que as ecuaciones de manera que obtengas la	
N	$Mg + \frac{1}{2} O_2 MgO \longrightarrow$	Δ H =		
3. Usa la ley de Hess para determinar el calor de la reacción de la siguiente ecuación neta. Este valor es el calor de la formación de óxido de magnesio.				
Δ	.Hf de MgO =	kJ/mol		
4. Compara los resultados experimentales con el calor de la formación en las tablas termodinámicas (-603 kJ/mol) y calcula el por ciento de error.				
Р	or ciento de error =	%		
	l resultado neto de la read dar tu respuesta.	cción en este experin	nento endotérmico o exotérmico? Usa los datos	
6. ¿Qué fuentes de error pueden ser responsables del por ciento de error obtenido?				
	ra la reacción neta de un s a son exotérmicas? Explica		ciones ser endotérmica si dos de las reacciones en	